A POSTAGE STAMP PROBLEM*

RONALD ALTER AND JEFFREY A. BARNETT†

The postage stamp problem is the following: An envelope may carry no more than \(h \) stamps, and one has available \(k \) integer-valued stamp denominations. Given \(h \) and \(k \), find the maximal integer \(n = n(h, k) \) such that all integer postage values from 1 to \(n \) can be made up. In addition, find all sets of \(k \) stamp denominations satisfying this condition.

The problem statement is usually modified by augmenting the solution sets with a stamp of value zero, and requiring that a letter carry exactly \(h \) stamps. For example, if \(h = 2 \) and \(k = 3 \), then \(n(h, k) = 8 \). The unique solution set is \(\{0, 1, 3, 4\} \). A construction of the integers 1, \ldots, 8 is

\[
\begin{align*}
1 &= 0 + 1 \\
2 &= 1 + 1 \\
3 &= 0 + 3 \\
4 &= 0 + 4 \\
5 &= 1 + 4 \\
6 &= 3 + 3 \\
7 &= 3 + 4 \\
8 &= 4 + 4.
\end{align*}
\]

Many solution sets may exist. For example, \(n(2, 6) = 20 \), and the five solution sets are \(\{0, 1, 2, 5, 8, 9, 10\} \), \(\{0, 1, 3, 4, 8, 9, 11\} \), \(\{0, 1, 3, 4, 9, 11, 16\} \), \(\{0, 1, 3, 5, 6, 13, 14\} \), and \(\{0, 1, 3, 5, 7, 9, 10\} \).

Clearly, \(n(1, k) = k \) with the solution set \(\{0, 1, \ldots, k\} \), and \(n(h, 1) = h \) with the solution set \(\{0, 1\} \). Stöhr [44], Henrici [12], and Stanton et al. [43], independently, show that

\[
n(h, 2) = \lfloor (h^2 + 6h + 1)/4 \rfloor,
\]

where \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \). If \(h \) is odd, then the unique solution set is \(\{0, 1, (h + 3)/2\} \). If \(h \) is even, then there are two solution sets: \(\{0, 1, (h + 2)/2\} \) and \(\{0, 1, (h + 4)/2\} \).

The only other case of a near closed-form solution is \(k = 3 \). Hofmeister [17] shows that

\[
\frac{4}{81}h^3 + \frac{2}{3}h^2 + \frac{66}{27}h \leq n(h, 3) \leq \frac{4}{81}h^3 + \frac{2}{3}h^2 + \frac{71}{27}h - \frac{1}{81}, \quad h \geq 34
\]

†Current email address: jbb@notatt.com.
The lower bound is achieved whenever \(h \equiv 0 \pmod{9} \). Klotz [20], [21] and Henrici [12] independently report similar but weaker results for the lower bound.

In 1936, Rohrbach [37] developed asymptotic bounds for \(n \) with \(h \) fixed and \(k \) large. He showed that

\[
\left(\frac{k}{h} \right)^h \leq n(h, k) \leq \frac{k^h}{h!} + O(k^{h-1})
\]

The lower bound is developed constructively. The upper bound is obtained by noting that \(\left(\frac{k+h}{h} \right) - 1 \) is sufficient because \(\left(\frac{k+h}{h} \right) \) is the number of combinations of \(k + 1 \) things (recall the zero stamp) taken \(h \) at a time with replacement. The \(-1\) appears because 0 is a potential sum but illegal postage.

Hofmeister [19, p. 112] derives the best-known lower bound by using an unpublished result of R. Windecker:

\[
\begin{align*}
\frac{4}{3} & \geq \frac{n(h, k) \geq (4/3)^{\lfloor h/3 \rfloor} (8/7)^{\lfloor (h-3h/3)/2 \rfloor} (k/h)^h - O(k^{h-1})}.
\end{align*}
\]

Hofmeister [119, p. 104] also gives bounds for the case \(k \geq 3 \) fixed and \(h \) large, as

\[
2^{k/4} \left(\frac{4}{3} \right)^{(k-4[k/4])/3} (h/k)^k + O(h^{k-1}) \leq n(h, k) \leq \frac{h^k}{k!} + O(h^{k-1}).
\]

A nontrivial upper bound for \(h = 2 \) appears in Rohrbach [37] as

\[
\frac{1}{2} \left(1 - 0.0016 \right) k^2 + O(k).
\]

This bound is improved in Klotz [20], [21], [22], who replaces 0.0016 by 0.0369.

Additional work on upper bounds for \(n \) is reported in Moser [27], Riddell [36], Salie [38], and Moser and Riddell [28]. For the case of large \(k \), the best results to date are given by Moser et al. [29] as

\[
n(h, k) < (1 - b_n) \frac{k^h}{h!},
\]

where \(b3 = 0.0221 \) and \(b4 = 0.0115 \). Further, \(b_h = (1.02f(h))^h \) when \(h \geq 5 \) and \(b_h = (1.1f(h))^h \) when \(h \geq 8 \), where \(f(h) = \cos(\pi/h)/(2 + \cos(\pi/h)) \).

Richard K. Guy suggests that, for h large enough, $n(h, k)$ is given by a finite set of polynomials in h of degree k. For example, Stöhr’s solution for $k = 2$ may be written

$$n(h, 2) = \frac{h^2 + (3 + 3c)h + d}{4},$$

where $c = d = h \mod 2$.

Guy’s conjecture for $k = 3$ is that, for $h \geq 20$,

$$n(h, 3) = \frac{4h^3 + 54h^2 + (204 + 3c_r)h + d_r}{81},$$

where c_r, d_r are given, for $h \equiv r, \mod 9$, by:

$$\begin{align*}
r &= -4 -3 -2 -1 0 1 2 3 4 \\
c_r &= 0 1 3 0 -2 0 3 1 0 \\
d_r &= 46 -81 -1 -170 0 62 -26 0 -154
\end{align*}$$

This problem has been around for a long time; however, the earliest reference we could find is Rohrbach [37]. Several special cases of the postage stamp problem appear in the recreational literature. See, for example, Sprague [42, Prob. 18], Gardner [3, Prob. 4], and Legard [24].

A problem closely related to solving $n(2, k)$ is the representation of the integers $1, \ldots, n$ by differences of the members of a solution set. Miller [26] and Leech [23] describe this problem.

Alter and Barnett [1] describe an application of the $n(2, k)$ problem to the optimal allocation of index registers on computers. Hargraves [6] describes another application. He uses solution sets for $n(h, k)$ to design optimal wiring patterns for an associative cache memory.

Several thousand hours of computer time have been dedicated to obtaining values of $n(h, k)$. All reported algorithms are exponential in h and k. Table 1 summarizes the known values of n except those given by simple expressions (i.e., $h = 1$ or $k = 1, 2$). The first publications of the included values are found in Stöhr [44], Henrici [12], Lunnon [25], Seldon [39], [40], Phillips [35], and Alter and Barnett [1]. Later, confirmatory results are given by Stanton et al. [43] and Heimer and Langenbach [11]. Henrici reports additional values for $n(2, k)$ where $k = 14, \ldots, 18$, as, respectively, 80, 92, 104, 116, and 128. He obtains these values using an unproved pruning heuristic. Thus they should be viewed as lower bounds until more reliable methods are employed. The values for $n(3, k), k \leq 47$, were calculated by John A. Bate; we are grateful to him for allowing us to publish them.

Several special-case investigations are worthy of note. Wegner and Doig [45] examine symmetric denomination sets. Let $\nu = \{a_0 = 0 < a_1 < \cdots < a_k\}$ be a denomination set. Then ν is symmetric if the sequence of differences

A Postage Stamp Problem

Table 1

<table>
<thead>
<tr>
<th>Known Values of (n(h, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h = 2)</td>
</tr>
<tr>
<td>(h = 3)</td>
</tr>
<tr>
<td>(h = 4)</td>
</tr>
<tr>
<td>(h = 5)</td>
</tr>
<tr>
<td>(h = 6)</td>
</tr>
<tr>
<td>(h = 7)</td>
</tr>
<tr>
<td>(h = 8)</td>
</tr>
<tr>
<td>(h = 9)</td>
</tr>
<tr>
<td>(h = 10)</td>
</tr>
<tr>
<td>(h = 11)</td>
</tr>
<tr>
<td>(h = 12)</td>
</tr>
<tr>
<td>(h = 13)</td>
</tr>
<tr>
<td>(h = 14)</td>
</tr>
</tbody>
</table>

of consecutive elements is palindromic. Symmetric solution sets exist for all values of \(n(2, k) \) that are known except \(k = 10 \). Rohrbach [37] investigates a restricted class of symmetric sets to derive his asymptotic bounds.

Henrici [12] drops the restriction that \(a_i \) be positive. He finds the solution set \(\{-1, 1, 2, 4, 8, 12, 16, 20, 22, 23, 25\} \) for \(n(2, 7) \) and claims \(n = 27 \). Table 1 shows \(n(2, 7) = 26 \). Note, \(k = 7 \) by Henrici’s definition. The claim is justified because the normal problem statement allows an uncounted zero element. On the other hand, this result has the range 1, \ldots, 27, whereas the normal result has the range 0, \ldots, 26.

Henrici finds the symmetric (and unique) solution set \(\{-1, 1, 2, 4, 8, 12, 16, 20, 22, 23, 25\} \) with range 0, \ldots, 48 for \(n(2, 10) \). The value \(-1\) is not included because sums must be formed from exactly two elements.

Alter and Barnett [1] derive an interesting bound for the case \(h = k \). Namely, \(n(h, h) \geq f_{2h} - 1 \), where \(f_i \) is the \(i \)th Fibonacci number.

Since the initial statement of the postage stamp problem by Rohrbach, significant progress toward a solution has been made. However, many issues remain open.

Problem 1. Can the bounds on n be improved? The distance between the best known upper and lower bounds is large. Clearly, there is room for progress short of finding a simple formula for n.

Problem 2. Is there a simple relation between $n(h,k)$ and $n(k,h)$?

Problem 3. What is the multiplicity of solution sets as a function of h and k?

Problem 4. Let $\nu = \{a_1, \ldots, a_k\}$ and define $n(h,\nu)$ as the maximum integer, n, such that all integers $1, \ldots, n$ can be made up as sums of no more than h of the a_i. Can $n(h,\nu)$ be expressed by a simple formula? Note that

$$n(h,k) = \max_{\nu \in U_k} n(h,\nu),$$

where U_k is the set of all k-element denomination sets.

Knowledge of $n(h,\nu)$ would be a tremendous aid to improving estimates of $n(h,k)$. The known lower bounds are generated by restricting U_k so that $n(h,\nu)$ is easily represented.

Problem 5. Let $\{a_1, \ldots, a_k\}$ be a solution set for $n(h,k)$. What are bounds for a_i as a function of i, h, and k? Also, what is the magnitude of a_{i+1} relative to a_i?

Problem 6. What is the behavior of $n(h,k)$ if negative and rational stamp denominations are permitted?

Problem 7. For what values of h and k do symmetric solutions exist?

Problem 8. Do polynomial-time computational algorithms exist for $n(h,k)$ and the corresponding solution sets?

The bibliography includes several papers not cited in the text. Our literature search was more difficult than usual because the postage stamp problem seems to have been reinvented many times. Stöhr [44] summarizes work prior to 1955.

We would like to express our appreciation to M. L. V. Pitteway and R. K. Guy for helping us locate many of the articles cited here. Also, we thank N. Goldman for help with translation.

References

